Mass Cascades and Anomalous Scaling in Cluster-Cluster Aggregation

Aerosols, emulsions and gels are a class of Ieérs to large and is characterised by a constant flux of
nary mixtures in which particles of one phase areass through all cluster sizes. In practice, to attain
dispersed in a continuous matrix of another. Everg-true stationary state, one must add a sink which re-
day examples include suspensions of particulatesniioves clusters larger than some large mass cut-off.
air which form smog, emulsions of essential cofféehe small mass physics is, however, insensitive to
oils in water creating expresso or cheese - gelswlfiat ultimately happens to the largest clusters.
water and oils dispersed in a solid milk-protein ma- A mean field theory determinindjly(t) was de-
trix. These mixtures are important in many branchesed by Smoluchowski in 1917. In Smoluchowski’s
of science and engineering from atmospheric sciertbeory,Nny(t) is determined by the kinetic equation:
to organic chemistry to astrophysics. They exhibit o
a variety of interesting physical phenomena. TheseatNm(t) :/dml)\(ml,m_ M) N, ()N m, (1) (1)
include flocculation (an instability of an emulsion 0 -
which leads to the dispersed phase forming clusters —2Nm(t)/dm1)\(m, Mg )N, (t) +Jm 1,
and eventually separating out), gelation (the emer- 0
gence of a macroscopically connected cluster of th@ere the integral terms describe aggregation and the
dispersed phase of an emulsion, usually causing s|gat term injects particles of mass 1 at a raté his
stantial changes in the material properties of the m'k%‘quation goes some way to describing the physics of
ture) and phase separation or creaming (Spontane%@regation. Fad = 0, it has decaying solutions de-
spatial separation of the two phases). In studyiRgyihing the generation of heavier clusters by aggre-
such phenomena, it is important to take into accoWltion. For finitel, it produces a stationary solution
transport of the dispersed particles within the contigy large times describing a mass cascade. It even pro-
uous phase and the interactions between them. yjdes an elemenary model of the gelation transition

. . for appropriate choice of the kernél(m;,ny). It's

To crea_te a _S|mple stochas_tl(? _model of su_ch P r%éinpv?/ealcl)(ness lies in the fact that, éince it)is a mean
nomena, imagine a cloud of initially monOOIISIOers’ﬁeld theory, itignores correlations between patrticles.
(uniformly sized) particles which move by dlffu5|or]_ike in many systems in statistical physics, in low

V\fth s?me dlfoSIOQ cor;]stanD. tWhen ttV\tlrc: par?- kenough dimensions, such correlations become strong
tcest?] ma_stﬁnl an mz_thappen ° rges'l"t €y's 'Cband the Smoluchowski theory fails. The critical di-
ogether with some With some probabllity, gIVeN By o ysion in this case is two. Understanding the statis-
a rate,A\(my,my), to form a new particle of mass,. . .

. . . tics of the model in dimensions less than or equal to
my + mp.  Obviously the aggregation of particle

T}No is a non-trivial problem, which we now address.

means that an initially monodisperse mixture wi . : )
. : . ) From now on, we consider the simplest possible
not remain so. At later times, the mixture is char- ) . . ]
) . L case : the aggregation kernel is a constant, indepen-
acterised by a non-trivial mass distributioNy(t),

. . . . dent of massA(mg,mp) = A. In this case, the mean
which gives the average density of particles of mags . . L

: . . . field solution for the stationary mass density is
m. It evolves as a function of time. One can imagine

intuitively that, if light particles are injected into the 3
mixture at a constant rate, the system may approach Nm = Cl\/; m-
a statistically steady state where the addition of light

particles is balanced by the creation of heavier pdmis is correct ford > 2. Ford < 2 we expect it to
ticles by aggregation. More careful analysis showe modified by diffusive fluctuations. Using Doi’s
that this is indeed the case. Such a model of clustaethod, a fairly standard approach for deriving con-
aggregation, in the presence of a source of light péiruum descriptions of stochastic particle systems,
ticles, produces a stationary state which is not unlikes possible to convert the master equation for the
the stationary state of a turbulent system. It exhibitsr@odel into a quantum field theory which can then be
mass cascade which transports mass from small clasalysed using powerful methods of statistical field
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; d < 2 there are additional divergences in the pertur-
i ' bative expansion of th&, about their mean field val-
8 § ] ues. These come from non-factorization of certain
composite operators in the theory. Unlike the diver-
= | ) 1 gences associated with coupling constant renormali-
i ] sation, these cannot be resummed explicitly making
. the renormalisation group approach essential. yLhe
2t il 1 are thus obtained as arexpansion where= 2 —d:

) , ; ; 2d+2 In(n—1)e
e 1 2 3 4 5 Yn = d——I—Z é(di_i_z)‘ko(sz)- 4)

n

Figure 1: Scaling exponents,, as a function oh The nonlinear scaling witm confirms the multi-

i i fractality of the mass distribution. This expression
from Monte Carlo simulations. P

with € = 1 is compared with Monte Carlo simula-

theory. The coupling constant for the theory is thtéqn.s done ind = l in Fig. 1. The ggre_emer_lt 1S sur-
aggregation ratey. When one performs an eXpang)rlsw_\gly good. G|ven_the approximations involved,
sion of the average particle density in powers)xofOne 1S t_empted o conjecture that the lowest oeder
one finds that the first correction to the mean fiefd Lo 1> 0N 1S actually exa_1ct.
answer is divergent fad < 2 necessitating a resum- Phy_S|caIIy, these multlfractal exponents have the
mation of the expansior? This resummation can éc:llowmg meaning. Given that thg are greater than

e
achieved using dynamical renormalisation group, (ﬁr

e (linear) self-similar exponents, the probability of
nding n nearby heavy particles idecreased with

due to a simple structure inherited from the fact that 7 - .
P espect to the self-similar prediction. This makes

the kernel is a constant, may be carried out ex IicitIr g ) e )
y P %/ nse, given that diffusive motions are recurrent for

It turns out that all divergences in the expansion fQr . .
. gence P .d < 2. Heavy particles which get close to each other
the average density are eliminated by renormalisa-

tion of A resulting in the following density fod < 2: meet qften, Stf"”g'y enhancing the probabﬂﬁy_ of ag-
gregation. This produces strong anti-correlation be-

2442 tween particles which in turn causes the breakdown
Nm = 2 (5) m @2, (3) of self-similarity reflected by Eq.(4). These results
may also be of interest in turbulence where the ori-

~ We now consider higher order correlation fungsi,"anq quantification of multifractality remains an
tions of the density. It turns out that a natural oh-

) ) e - l?Jpen problem of considerable interest.

ject to study iC,(my ... my) which is the probability

of finding n particles,my ... m,, within a small vol-

ume of space. In particular, we would like to knodReferences
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